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A two-species asymmetric exclusion process is considered with general transition 
rates subject only to the constraint of charge conservation. Conditions for 
the existence of a stationary product measure are found in both the cases of 
odd-even parallel dynamics and continuous-time dynamics. The results are then 
applied to a one-dimensional restricted solid-on-solid model, considered as a 
model of driven interfacial growth, showing a nontrivial dependence of the 
stationary measure on the external driving field. The dependence of the growth 
velocity on the slope of the interface is given and interface shapes in finite 
volume with opposite boundary conditions are investigated numerically. 

KEY WORDS: R-SOS model; stochastic lattice gas; two-species exclusion 
process; odd-even dynamics. 

1. I N T R O D U C T I O N  

Asymmetr ic  exclusion processes (one and two species) are of interest part ly 
as they provide nontrivial  realizations of systems out  of equilibrium, ~!t 
and  because of the large number  of models  which may  be simply m a p p e d  
onto  them. They are closely related to models  of interfacial growth,  ~2~ 
electrophoresis  of polymers,  t3~ directed polymers  in r a n d o m  media,  and 
others, t4) A s t rong character izat ion of these models  is obta ined th rough  a 
knowledge of their s teady states. In certain cases these are ob ta ined  as 
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factorised probability measures, tS' 6. 7) Other steady states have been found 
using the Matrix Product Ansatz, ts'9) which has been extended to two- 
species models ~l~ and sublattice parallel dynamics. ~" 12) 

In the current article we consider a two-species model with charge 
conservation, more general than previously considered, and investigate the 
general conditions on the transition rates for the existence of a stationary 
product measure. The model is defined as follows. To each site of the lattice 
7/ is associated a charge occupation number which may take on three 
values (+  1 , -  1 and 0). This number may be interpreted as representing 
the state of a site: occupied by a positive or a negative particle, or empty. 
Allowed elementary transitions consist in a simultaneous change of the 
charge occupation numbers on two nearest-neighbor sites, conserving the 
total charge; each type of particle (positive or negative) is not, in general, 
conserved separately. The precise definition of the model is given in 
Section 2. Two different dynamics are considered: 

1. An odd-even parallel dynamics: the bonds (i.e., the pairs of 
nearest-neighbor sites) are numbered in sequence. The odd-numbered 
bonds and the even-numbered bonds are updated alternately. One may 
think of updating the odd-numbered bonds just before half-integer times 
and the even-numbered bonds just before integer times. 

2. A continuous time dynamics, which may be regarded as a time- 
rescaled limit of slow evolution of the odd-even dynamics, as will be seen 
in Section 3. 

In both cases the dynamics is defined in terms of ten transition rates. 
We prove that there exists a codimension one manifold (i.e., nine dimen- 
sions) of dynamics with a one-parameter family of translationally invariant 
stationary product measures. The parameter is the charge density. 

The results derived for the exclusion process are then applied to a 
restricted solid-on-solid (RSOS) model describing the growth of a stable 
phase at the expense of an unstable phase. In this mapping, bonds and sites 
are exchanged, and charge occupation numbers of the exclusion process 
become the height differences between neighboring sites in the growth 
model. A formal Hamiltonian is defined on the set of configurations of the 
RSOS model, depending on a parameter E, which may be identified to the 
difference of free energy density between the stable and the unstable phases 
the interface separates. The rates of elementary transitions are then chosen 
to satisfy a local detailed balance with respect to the formal Hamiltonian. 
In the case of odd-even dynamics, local detailed balance is not satisfied 
for a complete odd-even update, because the dynamics depends on the 
order in which one updates odd and even sites (even at E = 0, where the 
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Gibbs measure associated with the Hamiltonian is invariant). For a non 
zero value of E, the usual Gibbs ansatz would not lead to a translation 
invariant stationary state. A notable feature of the stationary product 
measures found here is their non-trivial dependence upon the parameter E. 

Using the invariant product measures, we compute the mean velocity 
of the interface as a function of the slope. For two fixed asymptotic slopes 
with distinct values, a concave or convex profile develops whose shape can 
be discussed in terms of a Wulff construction (see e.g., ref. 2 and biblio- 
graphy therein), and dynamical phase transitions related to the occurrence 
of inflection points. 

In finite volume, with slope fixing stochastic boundary conditions, the 
speed of translationally invariant states is given by the same function of the 
slope as in infinite volume. In the case of equal left and right boundary 
conditions, there is convergence to the product measure exactly computed. 
Numerical simulations allow us to look for stationary states in the case of 
boundary conditions which fix opposite slopes. Various stationary shapes 
are observed depending on temperature and driving field. 

The paper is organized as follows: in Section 2 the exact solution for 
the product stationary measures in the case of odd--even dynamics is given; 
in Section 3 we present the results in the case of the continuous time 
dynamics. Section 4 is devoted to the interface dynamics, including local 
detailed balance, in both the odd-even and continuous time dynamics. 
The interface velocity is discussed in Section 5. Section 6 concerns the 
finite volume states of uniform average slope and numerical results for 
inhomogeneous interfaces in finite volume are given in Section 7. 

2. ODD-EVEN D Y N A M I C S  FOR A TWO SPECIES 
EXCLUSION MODEL 

In this section we define the discrete time dynamics for our system in 
terms of a two species particle system on a one dimensional lattice. A given 
site can be either empty or occupied by at most one particle of positive or 
negative charge, so that we associate each configuration with a sequence in 
{ -  1, 0, 1 } ~'. We implement an "odd-even" dynamics in the following way: 
we first define a local transition operator Ti, whose action on the cylin- 
drical functions depends only on the charge occupation numbers on sites 
i - 1  and i in a given configuration x: 

1 

T i f ( x ) - f ( x )  + ~ Z;'~(x) ~ C~ ,~( f (S~x) - f (x ) )  (2.1) 
ot,~= --1 kr ~ 
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where Z~."/J is the indicatrix of the local configuration: 

1 if x~_t = ~  and X i = f l "  ~ (2.2) 
ZT' t~(x) = 0 otherwise 

K~,~ is the set of allowed changes when those occupation numbers are 
precisely 0c, fl: 

K~,/t = { k # 0 such that loc + k[ ~< 1 and ifl - k[ ~< 1 } (2.3) 

S,.* is an operator which increases by k the charge at site i - 1  when 
permitted and correspondingly decreases the charge at site i by the same 
amount so that the total charge is conserved: 

(x~_t + k  

(S/k x)j = ~ x i - k  
kxj 

if j = i -  1 and k ~ K,-,_...,-;, 

if j - i  and k~K,.,_,..,.,, 
otherwise 

(2.4) 

Particle exclusion and charge conservation restrict the number of possible 
transitions to five pairs, corresponding respectively to the creation of 
particles of opposite charges, annihilation, exchange, or propagation of + 
or - charges in either direction. The corresponding rates C k ~, ~ can be 
adjusted freely provided the total coefficient of f (x )  in (2.1) remains 
positive (Ti must be positivity preserving): 

C k ~./~< 1 W, fl (2.5) 
k~K=,p 

Now taking into account the fact that any two local transition 
operators T~ and Tj. commute provided ]i-j[--r 1, we can define without 
ambiguity two transition operators T ~ and T eve" as the product of local 
transition operators acting on odd and even pairs of neighboring sites 
respectively: 

Todd = I-[ T2i-I (2.6) 
i 

and 

reven "- H T2i (2.7) 
i 
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Finally we implement the "odd-even" dynamics per unit time by defining 
an evolution operator L acting on cylindrical functions: 

(Lf)(x) = (T~ (2.8) 

The evolution over an arbitrary integer time t is then given by the operator 
L t. Separately, T ~ or T even may be taken as the evolution operators over 
half-integer times. 

We now look for stationary product measures for this model. In view 
of the structure of the evolution operator, stationary product measures can 
be looked for of the form: 

fl(X) "- H Q ( x 2 i )  R ( x z i +  1) (2.9) 
i 

where Q, R are two different measures on the set { - 1, 0, 1 }. 
Due to the translational invariance of Eqs. (2.8) and (2.9), the 

stationarity equations, 

/.t(x) = (/t T~ (2.10) 

can be solved locally: 

( Q |  x ~ ) = ( ( R |  X,) (2.11) 

Using (2.1), we obtain for all , ,  fl in { -  1, 0, 1}" 

Q(a) R(fl) = R(a) Q(fl) 

+ y' (C -k R(oc+k) Q ( f l - k ) - C  k R(a) Q(fl)) ~x + k, fl-- k ~x, fl 

k~r~.p (2.12) 

This system of nine equations can be partitioned according to the five 
possible values of the conserved quantity 0c + ft. Normalization of transition 
probabilities reduces the number of equations by one for each value of 
0c + ft. This results in a set of four independent homogeneous equations: 

( 1 - C ~ .  l l) Q ( - 1 )  R ( 0 ) = ( 1 - C '  , -  - , ,o) Q(0) R ( - 1 )  

(1 - C  l o, i) Q(1) R(O) = ( 1 -  C ~-, ~o) Q(o) R(1) 

C ~ I Q ( O ) R ( O ) = ( 1 - C  -2 , l , - , )  Q ( - 1 ) R ( 1 )  
(2.13) 

- ( 1  - C  l - - C  2 -1,~ _~,~) Q(1) R ( - 1 )  

C l o, o Q ( O ) R ( O ) = ( 1 - C  2 -~,1) Q(1) R ( - 1 )  

_ ( 1 - C ~  l - C  -2 -~ l,-Z) a ( - 1 )  R(1) 

822/89/3-4-3 
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We now assume C ~:~ 0, _+, < 1, C ~ I, o < 1, which leaves aside totally asym- 
metric models, and then also assume R ( 0 ) >  0, Q(0)>  0, which leaves aside 
one-species models. The first two equations in (2.13) then allow us to 
define an unknown c > 0 by 

c2 = Q(1) Q ( -  1) = R(1) R ( -  1) (2.14) 
(1 - C  ~ - l  _,.o)(1 - C _,)(1 - o. ,) R(0) 2 l.O) Q(0) z ( 1 - - C ~  t C 1 

The last two equations in (2.13) can then be written with c as the only 
unknown, and their compatibility is the only condition for existence of 
solutions. 

In the case when particles are conserved, C~. o ~ = 0, C L l_l = 0, 
C' =0 ,  the last two equations in (2.13) are compatible if and only if - - l , l  

(1 - - C L  2 - C  l C'  - C  2 ' _1)(1 _~.o)(1-  o . , ) - ( 1  _ , , t ) ( 1 - C ~ _ ~ ) ( 1 - C F . o  ~) 

(2.15) 

and any value of c is allowed. 
In the general case when C ~ o. o + C~. ~o > 0, the last two equations in 

(2.13) are compatible if and only if 

( l _ C  - 2  C 1 C - I C L  1 , . - , ) (  o . o + C ~ . o ' ) -  o.o - ,  
(1 - C ~ . '  � 9  

( 1 - - C  2 1 1)(C l C l C t _ ,  o . o + C ~ . ~ ) -  o.o - , . !  
(1 - C '  C I - i. o)( 1 -  o.,) 

(2.16) 

and c is the positive root of 

C l C - l  
c 2= o.o+ o,o (2.17) 

C L I  _ C  1 1 ! 1 --t l(1 o . , ) ( 1 - C  l . o ) + C  l , ( 1 - - C ~ .  I ) (1 - -C  ) 
- -  - -  - -  , , - -  1,0 

Having determined c, or chosen c in the case of particle conservation, 
the ratios R(1) R ( -  1)/R(0) 2 and Q(1) Q ( -  1)/Q(0) 2 are fixed; there 
remains a free parameter which may be defined by 

_ C - i  - i (1 ' 0 . . - z t ) R ( 1 )  (1 C_,.o) Q(1) y 2  

--(1 Col)~i_i i=(1-- i -  C - '  - . - ,,o) Q ( - 1 )  

This allows us to write down explicitly the solutions to (2.12) as a one- 
parameter (non-conserved case) or two-parameter (conserved case) family 
of stationary product measures: 
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c ( 1 - C  -1 l,o)Y 
Q(1) = 1 + c(1 - CL~ ) y + c(1 - -  C l - , ,  o) Y - '  

1 
Q(O) = 1 + c(1 - C - '  ' - '  , , o ) y + c ( 1 - C  l ,o)y 

c(1 - C  t - t  - l .o)Y 
Q ( -  1 )=  1 + c(1 - C - t  1 --1 l.o) Y + c( 1 - C_  t, o) y 

c(1 - C  l o,l)Y 
R ( 1 ) = l . + c ( l _ C t  l o,l) y+c(1--C~.',_t) y -  

R(O) = 1 
1 +c(1- -  C' - '  o, l) Y + c( 1 -- C~ i , - l ) Y  

c(1 - C f f  t - I  
R ( - 1 ) =  1 + c ( I _ C  ~ "-~)Y o. t) y + c(1 -- CO(. 1, - l ) Y  - l  

(2.18) 

The parameter  y is related to the charge density of the system, which we 
denote p, through the following formula: 

l 

p = �89 ~ x(Q(x)+R(x))  (2.19) 
x - -  - - !  

In the conserved case, the other free parameter  c fixes the particle density. 
The charge density p is a strictly monotonous function of y from ]0, + oo [ 
onto ] -  1, 1 [, for all values of the jump rates. 

Another quantity of interest is the average current J across the system 
for these invariant measures: 

! ! 

J= - ~' ~' kC~,~R(o~) Q(fl)= ~ x ( R ( x ) -  Q(x)) (2.20) 
ot, f l  = - -  ! k ~ Ka, p x = - - 1  

where the second expression is deduced from the first using the stationarity 
equations (2.12 ). 

3. C O N T I N U O U S  D Y N A M I C S  

Another possible way of defining a dynamics in such models is to 
consider a continuous time process. We now define a local infinitesimal 
generator by 

1 

L,f(x)= E zT'a(x) E r2.a(f(S ix)-f(x)) (3.1) 
ot, f l =  - - 1  k s,  Kat, p 
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together with (2.2-2.4) and the evolution on the space of cylindrical 
functions as 

OO--•f t 1 ~ (Lff ) (x)  ( x )  . (3.2) 

where r > 0 fixes the time scale: A simple correspondence can be found 
between continuous and odd--even dynamics, since the discrete time evolu- 
tion generator defined through (2.8) converges weakly to that of (3.2), 
when both time scale and jump rates are rescaled by a factor e, as 

Ck~" P = z-e Fk l ~ (3.3) 

in the limit when e goes to zero. Correlatively, one may investigate the con- 
dition of existence of stationary product measures associated to (3.1). It is 
the same as the one obtained through an expansion in e of relation (2.15) 
or (2.16) to the first non trivial (second) order: 

F 2 _ F L  2 F I _ F - I  1 _ F ~ . i  - i , l  , - t = (  o,I l , o )+ (F- I , o  , - , )  (conserved case) 

(3.4) 

o r  

F 2 - - F k  2 - l , l  , _ l +  
F ! F t - - F L  l F - l  --!,1 0,0 --I 0.0 

F 1 / ~ - i  o,o+ o,o 

1 , - - I , 0  . - -1 )  (non-conserved case) (3.5) 

In this case there is no difference between sublattices, and there is a one 
parameter family of stationary product measures/~ which can be written as: 

~,/(X) "~ l-I  P(xi)  
i 

with 

cy 
P ( 1 ) =  _~ 

l + c y + c y  

1 
P(O) = 1 + cy + c y -  

--1 cy 
P ( - 1 )  = 1 + c y + c y - ~  

(3.6) 
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where the parameter y > 0 has the same significance as previously, and is 
related to the charge density p, as 

c(y-- y - I )  (3.7) 
P = I  + cy + cy - l  

In the conserved particles case, c is arbitrary and fixes the particle density; 
in the nonconserved case c is the positive root of 

E l  / - , - 1  
C 2 __ 0 , 0  + o,o (3.8) 

E L I  l 
_ l  - [ - / "  1, 1 

The last three equations can be also be 
(2.17-2.19) in the limit e -o 0. 

recovered from equations 

4. INTERFACE DYNAMICS WITH LOCAL DETAILED BALANCE 

As is well known, the exclusion model of the previous sections can be 
mapped onto a problem of restricted solid-on-solid interface dynamics. In 
this setting each configuration of the interface is associated to a sequence 
of integers, h =  {hi}i~z, h i eZ ,  which represent the vertical location of 
the interface at site i--the heights. Furthermore, the configurations are 
restricted to those in which the height differences between neighboring sites 
differ by at most one unit: 

Ihi+t-h~l  ~< 1Vi~g  (4.1) 

so that the previously defined charge occupation number at site i, can be 
taken as the height difference between sites i and i + 1" 

x i = h i + l - h  i for all i ~ Z  (4.2) 

As a consequence of the conservation of charge, Eq. (2.8) defines also a 
local dynamics for the height variables h. 

In this setting, we introduce the following formal Hamiltonian: 

-boo q-- (x3 

n(h)=  ~ J l h i + l - h g l - E  ~ h i (4.3) 
i----- --oo i =  --~xD 

where J and E are both positive constants, and choose the rates C k oc,# SO 
that Tg as defined in (2.1) obeys the detailed balance rules with respect 
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to /-/. This dynamics was previously considered in ref. 13. All transitions 
which increment by k the ith height require: 

C k 
hi - h i -  I, hi + I -- hi 

C-k h i - - h i _  ! + k ,  hi+ ! - - h i - - k  

( 1 ) 
= e x p  - -k-~(H(S~h)-H(h))  (4.4) 

The use of the notat ion S k in the fight hand side of Eq. (4.4) is justified by 
the fact that any local difference depends only on the x variables. The 
above equations amount  to writing the ten jump rates C k in terms of five 
positive parameters vy, 7 ~ { 0, +_ 1, -i- 2}" 

C k = - - A H / 2 k T  __ blkl-I=l--I#la--k v 
e /33~x + f l  + k  - -  3 o t + f l + k  (4.5) 

where we have introduced 

a = exp -- f '} b = e x p  -~--~ (4.6) 

and 

zlH= H(S~ih)- H(h) 

The five pairs of allowed transitions are represented in Fig. 1. 
The vy can be adjusted freely. The positivity preserving relations (2.5) 

now reads 

/32<~a, /3_2<~a, a-lvl  +av_i ~b  -i 

b-la-l/3_ l q- a-2/30 ~< 1, b-~a/31 q- a2/30 ~< 1 
(4.7) 

Imposing left-right symmetry in tile transitions would require/3 2 --/3--2" 
In this case there are four different transition channels, z1H= _+E, _+ 2E, 

---L 1 I _r-l_ -L.U -L_F- ___._r- -l___ 

c~, o=b,,-',,, c'_,., =~,- ' :- ' , ,_, c:_.,.,=:-',,o cL ,= : - ' , , ,  ct ,.o=: -',,_ , 
c-',._,=t,-,:,,, c~.~=b,,,,_,, cz',=,=,,o_ cz~=,,,,  c-'o._,=,,,_, 

Fig. 1. Representation of allowed transitions, and corresponding rates: the first line gives the 
rates in the direction of the up arrow, and the second line the rates in the direction of the 
down arrow. 
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_+ ( 2 J -  E), +_ (2J + E). When IAHI takes four distinct values, Eq. (4.5) 
could be rewritten as 

C k = ~ ( z l H )  
a, fl 

with an arbitrary positive function # satisfying t~t 

r  =eAWkr~(dH) 

Using the formulation of detailed balance (4.5), the condition of existence 
of a product measure (Z16)-(2.17) for the height differences becomes: 

v 2 + 1)_ 2 - v 2 / ) _ 2 ( a  - l  + a) 
Vo= (conserved case: vl =v_! =0),  (4.8) 

a+a.7 z --v2--v_2 

o r  

Vo+ 
v t v _ t b  - l  /32-['-/3- 2 - / 3 2 / 3 _  2(a  -1  + a )  

o _ l a  @ Vl a - I  a + a  - !  ~ v 2 ~  0 _  2 

(non-conserved case: v~ + v_~ > 0) (4.9) 

For any value of a and b, there always exist a dynamics which simulta- 
neously satisfy the restrictions (4.7) and (4.8) or (4.9). 

The one-parameter family of stationary product measures now read 

c( 1 - av2)  y 

Q(1)= 1 +c(l_av2) y + c ( l _ a - t v _ 2 )  y -I 

1 
Q(0)= 1 +c(1 -av2) y + c ( 1  -a-~v_2)y-~ 

c(1 --a-lv_2) y -I 
Q ( - 1 ) = I  +c(1-av2) y+c( 1 -a-~v-z )  y- I  

c(1 -- a-Iv2) y 
R ( 1 ) -  

1 + c ( 1 - a - l v 2 ) y + c ( 1 - a v _ 2 ) y  -I 

(4.10) 

1 
R(0)=  1 + c ( l _ a - l v 2 ) y + c ( l _ a v _ 2 ) y - I  

-1  c(1 --av_2) Y 
R ( - 1 ) =  1 + c ( l _ a - l v 2 ) y + c ( l _ a v _ 2 ) y - t  
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where the parameter c is arbitrary in the conserved case, and otherwise is 
the positive root of 

c ~ b Z ( a - ' v  = I + a v _ l )  (4.11) 
av,(1 - a - I v 2 ) ( 1  - a-IV_z) + a - i v _  l(1 - av2)(1 - av_2)  

The stationary measures depend in a non trivial way on the external 
driving field E through the parameter a, even when left right symmetry is 
imposed (v2 = v_2). 

The auxiliary parameter y is now related to the mean slope of the 
interface, which we denote tan O, through the following formula: 

1 1 
tan 0 = ~  y' x ( Q ( x ) + R ( x ) )  

cy(1 - a v 2 )  - -  cy-l(1 - a - Iv_z)  

2( 1 + cy( 1 - -av2)  + cy -~ (  1 -- a - iv_2))  

cy( 1 -- a - l y E )  -- c y -  l( 1 -- av_2)  

+ 2(1 + c y ( 1 - - a - ' v z ) + c y - l ( 1 - - a v _ z ) )  (4.12) 

We now give some explicit examples of the product measure for different 
realizations of the dynamics. 

4.1. Heat Bath Dynamics 

A simple case is provided by thermal bath dynamics, where inde- 
pendence of the transition probabilities from the incoming state fixes the 
amplitudes in all channels: 

/ 3 _ 2  ~--~/32 - ~ - ~  a - l + a  

6 2 

Vo = 1 + a - 2 b  2 + aZb 2 

a - i b  
v~ = 1 + a - 2 b  2 + a2b 2 

ab 
v_  l = 1 + a - 2 b  2 + a2b 2 

(4.13) 

In this case, relation (4.9) is found to be satisfied. The constant c is given by: 

c = b ( a + a  - l )  (4.14) 
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and the stationary product measures now reads 

y2 y2a2 

Q( 1 ) y2 + y a b - ~  + a 2 R(  1 ) y2a2 + y a b - ~  + 1 

yab - l  y a b -  l 
Q(O) y2 + y a b - ~  + a 2 R(O) y2a 2 + y a b _  ~ + 1 (4.15) 

a 2 1 

Q( - 1) y2 + y a b -  ~ + a 2 R( 1 ) y2a 2 -q- y a b -  ~ + 1 

where the auxiliary parameter y is related to the average slope tan 0, 
through: 

l = y2 _ a z yZa2 - 1 (4.16 ) 
2 tan 0 = ~ x ( Q ( x )  + R ( x ) )  y2 + yab - ~ + a 2 + y2a2 + yab - ~ + 1 

x =  - - |  

4.2. Metropolis Dynamics 
4 

A Metropolis dynamics for the RSOS model is defined as follows: 

(i) attempt rates wt and w2 corresponding respectively to k = +_ 1 and 
k = + 2, are fixed independently of the Hamiltonian (this will not in general 
be compatible with an invariant product measure); 

(ii) The transition rates are taken as 

Ck ~ e x p { - - A H + ( o q f l ; k ) }  wlk I if I~+kl~<l and [fl-kl<~l 
~" P = ( 0  otherwise 

with 
(4.17) 

d H +  (~, fl; k) = max{ J I~ + kl + I f l -  k l -  E k -  J I~1- J IPl, o} (4.18) 

wl 2 - a ( a  - l  + a )  wl 
a2w 2 + _2 ~ = awi _ (4.20) 

a + a 1 + a - 2 a w t  

The correspondence with the vy is given by: 

l ) 2 - ' v - 2 = a w i ,  t)o "-  a 2 w 2 ,  / ) -1  = b a W l  

= ~ba-~w~ if E~<2J (i.e. at> b) (4.19) 

vl ( b _ l a w l  if E> ~2 J  (i.e. a<~b) 

Assuming for definiteness a >f b, we find from (4.19) the necessary relation 
between w~ and w2 in order to get an invariant product measure: 
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The restriction w~ < 1/2 is sufficient to satisfy the inequalities (4.7). The 
requirement w2 >/0 is always fulfilled when w~ >_. 0. There is thus a one- 
parameter family of Metropolis dynamics with invariant product measures 
given by (4.10), which take the form: 

c( 1 - -  a 2 w l )  y 1 c( 1 - Wl) y - l  
a(1) = de a(0) = d--- S Q ( -  1)= de 

c(1 - W l )  y 1 c(1 - a Z w l )  y 
R(1 ) = dR R(0) =d--~ R ( -  1) = dR 

--1 

d o =  1 +c(1 - a 2 w l ) y + c ( 1 - - W l ) y  - i  

dR= 1 + c ( 1 - - w l ) y + c ( 1 - - a 2 w l ) y  - l  

C2~ 
b Z ( a - Z + a  2) 

)2 )2 (1 - w~ + (1 - aZwl 

(4.21) 

(4.22) 

4.3. Cont inuous Time Dynamics 

The setting is as in Section 3, with (3.3) becoming 

vy = - u~. (4.23) 
Z" 

In the limit e ",, 0, a continuous dynamics is obtained, and the condition for 
an invariant product measure becomes 

U2 + U--2 (conserved case: ut - - U  ! "--0)  (4.24) Uo = _------x-i~ a + a  

o r  

Uo+ 
UlU_I b - l  U2"+U_ 2 

u _ ~ a + u ~ a  -~ a + a  -~ 

(non-conserved c a s e :  u I + u _ l > 0 )  (4.25) 

The invariant measure is of the form (3.6). In the conserved particles case, 
c is arbitrary; in the non-c0nserved case c is the positive root of 

C2 = b  2 a-~u~ +au_~ aul + a - l u - t  (4.26) 

The invariant measure depends upon E except when u_ t =  u~. 
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5. SPEED OF THE INTERFACE IN AN INVARIANT MEASURE 

The mean velocity of the interface does not depend on the absolute 
height of the interface and can therefore be computed using the measure for 
the height differences. It is equal to minus the average current defined in 
Section 2 and its expression for any product measure reads: 

V =  <hi( t  + 1 ) - h , ( t ) >  = 
l 

y '  ~ kC~./~R(o~) Q([3) (5.1) 
a, f l =  --1 k ~ K~ /~ 

Using the stationarity Eqs. (2.12), one can transform the quadratic 
Eq. (5.1) into a linear one: 

I 

v= ~ x(Q(x)-R(x)) 
x--'-- - - l  

c ( a - l - a ) ( 2 c [ v 2  + v _ 2 -  (a - l  + a )  U2U_2] -F o2y-F V_zy - l  ) 
(5.2) 

(1 +cy(1-avz)+cy-l(1-a-2v ) -~)) 
x(1 + c y ( 1 - - a - l v z ) + c y - l ( 1 - - a v _ 2 ) )  

In the case when left-right symmetry is imposed, u _ 2 = u 2 ,  the velocity 
becomes an even function of the average slope tan 0 (cf. (4.12)). It is then 
sufficient to discuss tan 0t> 0. At tan 0 =0,  the first derivative of V with 
respect to tan 0 is of course V'(0) = 0, and the sign of the second derivative 
V"(0) is the same as that of the first derivative of V with respect to 
z = ( y  + y - l ) / 2  at z -  1. We thus find, up to positive factors, 

V"(0) ~ 1 - c ( 1 - a - l v 2 ) - c ( 1 - a v 2 ) - 8 c 2 ( 1 - a - l v 2 ) ( 1 - a v 2 )  (5.3) 

We also need 

V"( 1 ) ~ 2( 1 - a-Iv2)( 1 - av2) c 2 - 1 

For the heat bath algorithm, Eqs. (5.3)-(5.4) simplify to 

V"(O) ~ 1 - ba - l  - ba - 8b 2 

V"(1) ~ 2b 2 -  1 

(5.4) 

(5.5) 

(5.6) 

Convex or concave profiles on the infinite line can be stable or 
unstable depending on whether V(tan 0) coincides with its concave or 
convex envelope over the interval between the asymptotic conditions at 
+oo. t2) Taking the number and type of possible invariant shapes as a 
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Fig. 2. Phase diagram in the case of heat-bath dynamics: in region (I), the velocity V is 
maximum for a non zero slope and admits an inflexion point between zero and the position 
of the maximum; in regions (II) and (III), the velocity is maximum for zero slope; in region 
(III) the velocity admits an inflexion point near tan 0 = 1. 

dynamical order parameter, transition lines are given by V"(0)=0 and 
V"(1)=0, as shown in Fig. 2. 

Another interesting quantity is the mobility or linear response coef- 
ficient for the speed as function of the field. It is here the sum of the 
contributions from the dependence of both the measure and the rates on 
the external field. For/3_ 2 --/32, it reads 

1 lim V by2 4b + y + y - t  
fl E,,,o E -  1 -  v2 (1 + b ( y + y - 1 ) )  2 (5.7) 

In the case of the thermal bath, both dependences contribute equally. 

6. UNIFORM INVARIANT MEASURES FOR FINITE SYSTEMS 

In finite volume we consider sequences, { hi} i~ t-2. ~. 2LJ, with some 
boundary conditions. The position of the interface is, to some extent, 
arbitrary, and may be fixed by, say, setting h_2z =0,  leaving 4L inde- 
pendent variables. We choose to update the odd sites just before half- 
integer times and the even sites just before integer times. 

Here we consider two possible specifications of the boundary condi- 
tions for which the odd-even uniform product measure (4.10) plays an 
important role. It is convenient to specify these boundary conditions in 
terms of the height differences xi=hi+~-hg,  defined for ie  [ - 2 L ,  2 L -  1 ]. 
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6.1. Slope Fixing Stochastic Boundary Condit ions 

We consider a lattice with open boundary conditions. Updating hi is 
equivalent to considering all the possible transitions for the pair (x i_ ~, x i). 
For odd-site updates, all the x i are naturally considered in pairs, implying 
that T ~ may be defined as before (Eq. (2.6)). For the even-site updates 
X_zL and XzL_ l cannot be paired, and their update needs be specified 
through a modification of T ~n. A natural choice is to update the unpaired 
sites stochastically. If x_zi. is chosen according to the distribution R(x) and 
XzL-~ according to the distribution Q(x), for a given choice of y, the 
measure 

/ - / s t o c h ( X )  - -  R(X_2L ) Q(x2~_ l )  R(xzi) Q(xzz._ ,) 
i = - L + I  

(6.1) 

is invariant under evolution of integer times. 
While all the equal time correlation functions will remain the same as 

in the infinite system, the two-time correlations will differ, reflecting the 
different update scheme at the boundaries with respect to the bulk. With 
these boundary conditions the total height difference hzL--h_zL is no 
longer conserved, and the slope of the interface is only given as an average 
quantity, whose value is the same as in the infinite volume limit. 

A modified form of these stochastic boundary conditions will be used 
in the following section to generate non-uniform interface profiles. There 
the stochastic update of the boundary sites is done with Ro~(X) for i = - 2 L  
and Qo,.(x) for i = 2 L -  1, where tanh(0~) and tanh(02) are the slopes of the 
interfaces in the respective uniform cases. 

6.2. Ti l ted Periodic Boundary Condit ions 

Periodic boundary conditions are implemented in the space of the 
height differences x~ by identifying X2L = X--2L. The conservation of charge 

2 L - -  1 

Z Xi= h2L-- h_2L (6.2) 
i = --2L 

adds an additional constraint to the evolution of the system. The measure, 
invariant under integer time evolution, takes the form" 

i 

/ ' / p e r i o d i c ( x )  - -  Q(X2i--1) R(x2i) Q(X2L-1) R(X-2L) 
i =  - L + I  

x ~ x~--4L tan 0 (6.3) 
i = - - 2 L  
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were the tilt of the interface, 0, has been defined through 

h2t -- h _ 2L = 4L tan 0 (6.4) 

Since the x take only integer values, 4L tan 0 must be integer. While the 
measure (6.3) remains invariant with these boundary conditions, it is of 
interest to know if it is generically selected. Figure 3 shows the velocity- 
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Fig. 3. (a) Plot of the velocity as a function of the slope for two sets of parameters: (I) 
Elk T = 0.5, J/k T = 1 and (II) Elk T = 0.5, J/kT-- 2. Solid lines represent the analytic results, 
and the circles and squares Monte Carlo results for a system of size N =  100 and periodic 
boundary conditions. (b) Plot of the velocity as a function of the slope for 
a=exp(-E/2kT)=0.99, b=exp(-J/kT)=0.99, corresponding to region ( lI l)  of Fig. 2 
(analytical). 
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angle plots for various values of the model parameters and heat-bath 
dynamics, compared with the expression (5.2) which is exact in the infinite 
volume limit. Starting from a state were all the x~=0, the finite system 
evolved towards the stationary state (6.3). Other initial conditions were 
also taken, and in each case the system evolved towards the results predic- 
ted by the product measure for the infinite systems, up to corrections of 
O(1/L) caused by the additional constraint on the slope. 

7. INTERFACE SHAPES IN FINITE VOLUME:  
N U M E R I C A L  RESULTS 

In this section we investigate the behavior of non-homogeneous 
interfaces in finite systems, and in particular the existence of so-called roof- 
shaped profiles,~ 4) which correspond to a shock in the hopping particle 
representation. Throughout this section we use the heat-bath algorithm. 

We consider a finite system with stochastic boundary conditions, as 
described in Section 6. The value of X-EL is chosen with a probability 
distribution Ro, where the subscript 0 determines the parameters of 
the measure through formulae (4.10)-(4.12), and x2~_~ is chosen with a 
distribution Q-o. This choice of boundary condition fixes the average slope 
of the interface at the boundaries, and the profile must interpolate between 
these two slopes over the length of the system. 

In the infinite system, one is usually interested in a scaling regime 
where the spatial dimensions are rescaled with the time. In particular, 
regions of different slopes grow indefinitely with different rates of spreading. 
This is the basis of the Wulff construction, which determines the profile of 
the interface from the convex (or concave) envelope of the velocity-slope 
graph, rE) 

For finite lattices, the spreading is limited by the total size, and there- 
fore the final profile will be determined by the slope which spreads the 
fastest. A roof-shaped profile is defined as a triangular shaped profile with 
a central region over which the interface slope adapts between the two 
limiting angles, We deem a such profile to be stable if, as the system size 
is increased, the tip region remains of size O(1). 

The interface profiles are found by averaging configurations over 
successive Monte Carlo steps, where a Monte Carlo step is defined as one 
whole odd-even update. The averaging is done at integer times. Two 
schemes were used for the averaging. The first consisted of calculating the 
average local slope, p i=  (x i )  and then summing these quantities, fixing 
h_EL =0, to find the average interface shape. In the second, the interface is 
recentered at each time step with respect to a point chosen to move with 
the peak. There are several possible methods of determining the point 
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about which to re-center. The simplest is to look for the absolute maximum. 
This has the disadvantage that there may be, at a given instant, due to 
fluctuations, more than one candidate, creating a problem of choice, even 
when the system has an obvious global profile. A possible way to average 
out fluctuations is to re-center relative to the center of mass. The problem 
here is that the center of mass moves randomly over a smaller interval than 
the maximum, and there is no simple relationship connecting the position 
of the two. In the end we chose a particularly simple method; the higher 
extremity of the interface profile is chosen, and the level followed until 
another site at the same height is found. The recentering is then done about 
the mid-point of this interval. While this method is quite crude, it works 
well, particularly when the profile has a well defined maximum. 

Concave and convex profiles will now be considered separately. The 
system is taken to be composed of N = 4L sites. 

7.1. Concave Profiles 

In the case of a concave profile (0>0) ,  there are three distinct 
possibilities. 

1. The interface velocity for angle 0 is smaller than for all the angles 
0' ~ ] - 0 ,  0[. Figure 4 shows the average profile, averaged over l0 s Monte 
Carlo steps per site for various system sizes, along with the re-centered 
profiles (averaged over 10 6 Monte Carlo steps). The recentered profiles 
show that, as the size of the system is increased, the tip of the profile 
remains of O(1). The slope outside this central region is essentially equal 
to the boundary value. 

Figure 4(b) suggests the interface profile to be essentially of (rounded) 
triangular shape. If the maximum may be localized anywhere on the lattice 
with equal probability, the resulting averaged profile would be parabolic, 
h = N tan 0 ( x / N -  1/2)(x/N + 1/2), giving a maximum height of hmax = 
N/4 tan 0 ~ 0.2 for tan 0 ~ 0.8, which is the case shown. 

Figure 5 shows the average slope or average local density profile in the 
particle interpretation. A sharply defined roof-shaped profile in the inter- 
face picture corresponds to a shock in the particle picture. The averaging 
process smears out the shock profile. Here, it can clearly be seen that the 
profile consists of a constant slope, except for a boundary region. From the 
above considerations, this indicates that the shock has the same probability 
of being localized at every lattice site (excluding the boundary region). 

Figure 6 shows the variation of the maximum height of the rescaled 
averaged interface as a function of the inverse system size. The results show 
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that a limit for hmax/N of about 0.2 is attained for an infinite system size, 
as predicted above. 

These considerations suppose that disturbances due to boundaries can 
be felt only over a finite distance. This appears indeed to be the case, and 
a finite size analysis indicates this distance to be of the order of 30--40 
lattice sites. Since the interface profile will in practice have a rounded tip 
with a finite width (here of the order of 30 sites), one can understand this 
boundary region in terms of the approach of the tip to the edge of the 
system. 

2. The velocity for angle 0 is greater than the velocity for an horizon- 
tal slope, but the growth velocity is greater than for 0 in some range 
]0', 0[, with 0 '>  0 (and symmetrically in the range ] - 0 ,  - 0 ' [ ) .  Here the 
horizontal phase is expected to win. The averaged profiles are flatter, and 
can clearly be seen to flatten as the system size is increased (Fig. 7). The 
rescaled height of the interface tends to zero as the system size is increased. 
The interface must, however, adapt its slope to that fixed at the boundaries. 
Since the velocity is not monotonic in the slope, we would expect a "kink" 
to be formed between the angles 0 and 0' which have the same velocity. 
This "kink" will be pushed to the edge of the system, by the emergence of 
the stable horizontal phase. This may be seen in the profiles shown in 
Fig. 7; there is a small region close to the boundary where the variation of 
the slope is important. 
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Based on this picture, a scaling for the maximum height of the form 

h m a , , = a + b ( N - c )  d (7.1) 

may be expected. The value of c corresponds to twice the width of the 
"kink" localized at the boundary (there being a kink at each end of the 
lattice). The variation of the hma x with N was fitted using the scaling form 
(7.1) for both d= 1/2 and d= 1/3, both where found to be equally good fits. 
Unfortunately it would be necessary to go to much larger system sizes in 
order to determine the fight exponent d. However, the boundary region 
seems in both cases to be of a significant size, consistent with the formation 
of a boundary kink. 

3. The velocity for 0 is greater than the velocity for all the angles 
0'~ ] - 0 ,  0[. Figure 8 shows the average interface profiles. Here too the 
interface flattens with system size, the flat phase being also the stable phase. 
The velocity is monotonic in the angle in the range considered. The interfa- 
cial slope varies continuously from its value fixed at the boundaries to the 
horizontal in the middle of the system. This can be seen from the averaged 
local slopes, which vary more smoothly than in the previous case. 

The variation of the height with system size was fitted using (7.1) for 
d =  1/2 and d = 1/3 as above. Again the fits do not discriminate enough to 
be able to fix the value of the exponent. 

7.2 Convex Profiles 

For convex profiles (0 < 0), slopes which win are those corresponding 
to the larger growth velocities. Here too there are three generic situations. 

1. The velocity decreases monotonically as a function of the slope, 
the horizontal profile having the greatest growth velocity is the most stable. 
There is no discontinuity in the allowed slopes, thus there is no structure 
formed either in the bulk of the system or at the boundaries (Fig. 9(a)). 

2. The velocity is maximal at some angle 10o[ < [0[ (Fig. 9(b)). 

3. The velocity is smaller for all [0'[ < [0[ (Fig. 9(c)). 
In the second and third cases, there is a discontinuity in the slopes of 

the phases which can appear. In the second case the stable phase has a 
smaller slope than the boundaries, while in the third case, the relatively 
stable interfaces have slopes +_ tan 0. A sharp triangular shape is expected 
in both cases, with a tip of width O(1) formed in the bulk of the system. 
There is a difference of behavior at the boundaries, which can be seen 
clearly in Fig. 10. A slope profile similar to the one plotted in Fig. 10(a) 
has been found already in one-species model by Krug. (~4) 
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